Bezogia by ZOGI Labs
  • Sign up for Beta
  • 🎮Legends of Bezogia
    • INTRODUCTION (QUICK LINKS)
    • A Fully Decentralized Gaming-As-A-Service Platform and Limitless MMORPG Gaming Metaverse Designed for Non-Crypto People
      • The Key to Decentralization For Everyone
      • How a Limitless MMORPG defines a true Gaming Metaverse
      • Data and Metrics on Gaming Economy and User Generated Content and Worlds
    • Technicals (Sustainability Mechanics and Incentive Logic embedded with Decentralized Tech)
      • Algorithmic In-Game Reward Pools
        • Pool Replenishment and Revenue
        • In-Game Reward Pool Simulations
      • Core Mechanics: Minting, Summoning, Renting, Staking and Trading
        • Minting (Crafting Weapons)
        • Summoning (Breeding of Bezogi)
        • Renting (Rental Reward Pool)
        • Staking
        • Trading (Marketplaces and Pawn Shops)
      • Game Technology
  • Token Overview / Roadmap Team / Social Impact
    • What are Magical Blocks? ($MBLK)
    • $MBLK Tokenomics
    • Game Overview
      • Creators Economy Of Bezogia (DGaaS)
      • Legends of Bezogia (MMORPG)
        • How do I play ? (Whitepaper V1)
      • The Economic Nexus
      • What are Bezogi NFT ?
        • Petzogi
      • The Magical Worlds of Bezogia
      • Virtual Real Estate (Land)
    • Roadmap
    • Social Impact
    • The Team
  • Chronicles of Bezogia
    • Storyline / Lore
      • Chapter 1: Genesis
      • Chapter 2: The Golden Age
      • Chapter 3: The Great Migration
    • Characters
      • The Trolls
      • The Social Justice Warriors
      • The Keyboard Warriors
Powered by GitBook
On this page
  1. Legends of Bezogia
  2. Technicals (Sustainability Mechanics and Incentive Logic embedded with Decentralized Tech)
  3. Core Mechanics: Minting, Summoning, Renting, Staking and Trading

Renting (Rental Reward Pool)

PreviousSummoning (Breeding of Bezogi)NextStaking

Last updated 1 year ago

The rental reward pool is a pool of MBLK rewards for owners of Bezogi NFTs. When a player rents a Bezogi in-game, a percentage (to be confirmed) of player earnings are added to the Rental Reward pool. Each rarity of Bezogi pays 10% of its earnings as a tax to all rarer Bezogi in supply.

For example, Common Bezogi pay 10% of earnings to Rare, Epic, Mixed-Breed and Purebred Bezogi. Mixed-Breed Bezogi on the other hand only pay 10% tax to Purebreds. This brings significant additional rental reward value to higher rarity Bezogi on top of their increased power level in-game.

Total earnings of each Bezogi NFT owner can be calculated as follows:

CCC = Total Common Bezogi earnings

RRR = Total Rare Bezogi earnings

EEE = Total Epic Bezogi earnings

MMM = Total Mixed-breed Bezogi earnings

PPP = Total Purebred Bezogi earnings

NcN_cNc​ = Common Bezogi Count (Nc≥1N_c≥1Nc​≥1)

NrN_rNr​ = Rare Bezogi Count (Nr≥1N_r≥1Nr​≥1)

NeN_eNe​ = Epic Bezogi Count (Ne≥1N_e≥1Ne​≥1)

NmN_mNm​ = Mixed-breed Bezogi Count (Nm≥1N_m≥1Nm​≥1)

NpN_pNp​ = Purebred Bezogi Count (Np≥1N_p≥1Np​≥1)

OcO_cOc​ = No. of Common Bezogi owned (Oc≥0O_c≥0Oc​≥0)

OrO_rOr​ = No. of Rare Bezogi owned (Or≥0O_r≥0Or​≥0)

OeO_eOe​ = No. of Epic Bezogi owned (Oe≥0O_e≥0Oe​≥0)

OmO_mOm​ = No. of Mixed Bezogi owned (Om≥0O_m≥0Om​≥0)

OpO_pOp​ = No. of Purebred Bezogi owned (Op≥0O_p≥0Op​≥0)

SSS = Total income of Bezogi Owner

Total earnings can be divided into three parts:


Purebred Earnings (No Tax):

PNp⋅Op\Large \frac{P}{N_p} \cdot O_pNp​P​⋅Op​

Common, Rare, Epic, Mixed-breed earnings after tax (90%):

0.1⋅((C(Or+Oe+Om+Op)Nr+Ne+Nm+Np)+(R(Oe+Om+Op)Ne+Nm+Np)+(E(Om+Op)Nm+Np)+M⋅OpNp)0.1 \cdot\left(\left(\frac{C(O_r+O_e+O_m+O_p)}{N_r+N_e+N_m+N_p}\right)+\left(\frac{R(O_e+O_m+O_p)}{N_e+N_m+N_p}\right)+\left(\frac{E(O_m+O_p)}{N_m+N_p}\right)+\frac{M \cdot O_p}{N_p}\right)0.1⋅((Nr​+Ne​+Nm​+Np​C(Or​+Oe​+Om​+Op​)​)+(Ne​+Nm​+Np​R(Oe​+Om​+Op​)​)+(Nm​+Np​E(Om​+Op​)​)+Np​M⋅Op​​)

Common, Rare, Epic, Mixed-breed tax earnings (10%):

S=PNp⋅Op+0.9⋅(CNc⋅Oc+RNr⋅Or+ENe⋅Oe+MNm⋅Om)+0.1⋅((C(Or+Oe+Om+Op)Nr+Ne+Nm+Np)+(R(Oe+Om+Op)Ne+Nm+Np)+(E(Om+Op)Nm+Np)+M⋅OpNp)\begin{aligned} &S=\frac{P}{N_p} \cdot O_p+0.9 \cdot\left(\frac{C}{N_c} \cdot O_c+\frac{R}{N_r} \cdot O_r+\frac{E}{N_e} \cdot O_e+\frac{M}{N_m} \cdot O_m\right) \\\\ &+0.1 \cdot\left(\left(\frac{C(O_r+O_e+O_m+O_p)}{N_r+N_e+N_m+N_p}\right)+\left(\frac{R(O_e+O_m+O_p)}{N_e+N_m+N_p}\right)+\left(\frac{E(O_m+O_p)}{N_m+N_p}\right)+\frac{M \cdot O_p}{N_p}\right) \end{aligned}​S=Np​P​⋅Op​+0.9⋅(Nc​C​⋅Oc​+Nr​R​⋅Or​+Ne​E​⋅Oe​+Nm​M​⋅Om​)+0.1⋅((Nr​+Ne​+Nm​+Np​C(Or​+Oe​+Om​+Op​)​)+(Ne​+Nm​+Np​R(Oe​+Om​+Op​)​)+(Nm​+Np​E(Om​+Op​)​)+Np​M⋅Op​​)​
🎮